Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Increasing the size and complexity of discrete 2D metallosupramolecules

Abstract

Owing to the reversible, directional and predictable nature of metal–ligand coordination, coordination-driven self-assembly has emerged as a powerful bottom-up strategy for preparing metal-containing supramolecules or materials. In the field of 2D constructs, considerable progress has been made in the coordination-driven self-assembly of small discrete polygons (<5 nm) and infinite 2D polymers. However, structures of intermediate size have not been widely explored because of challenges in their synthesis and characterization. In this Review, we focus on the assembly of large 2D metallosupramolecular architectures of increasing size and complexity through three distinct approaches: expanding the size of macrocycles, increasing the number of layers within concentric polygons and forming complex structures by tessellation. These large but discrete 2D metallosupramolecules possess the unique features of both macrocycles, including a precisely controlled structure with high solubility for solution-based applications and characterization, and infinite polymers, such as an ordered distribution of the functionalities. Therefore, these systems could serve as ideal models for investigating the structure–property–function relationships of 2D materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of three types of discrete 2D metallosupramolecules.
Fig. 2: Supramolecular polygons with metals at the edges.
Fig. 3: Supramolecular polygons directed by organic templates and polygrams with metals at the corners.
Fig. 4: Supramolecular concentric polygons with rigid organic spokes.
Fig. 5: Supramolecular concentric polygons with flexible organic spokes or coordination spokes.
Fig. 6: Supramolecular triangular tessellations without a hexatopic core ligand.
Fig. 7: Supramolecular triangular tessellations with a hexatopic core ligand.
Fig. 8: Supramolecular hexagonal tessellations.
Fig. 9: Supramolecular square tessellations.
Fig. 10: Characterization of 2D metallosupramolecules with mass spectrometry.
Fig. 11: Characterization of 2D metallosupramolecules with AFM and STM.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Zhuang, X., Mai, Y., Wu, D., Zhang, F. & Feng, X. Two-dimensional soft nanomaterials: a fascinating world of materials. Adv. Mater. 27, 403–427 (2015).

    Article  CAS  Google Scholar 

  3. Stock, N. & Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012).

    Article  CAS  Google Scholar 

  4. Schoedel, A., Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Structures of metal–organic frameworks with rod secondary building units. Chem. Rev. 116, 12466–12535 (2016).

    Article  CAS  Google Scholar 

  5. Yang, L., Tan, X., Wang, Z. & Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115, 7196–7239 (2015).

    Article  CAS  Google Scholar 

  6. Sakamoto, R. et al. The coordination nanosheet (CONASH). Coord. Chem. Rev. 320–321, 118–128 (2016).

    Article  CAS  Google Scholar 

  7. Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    Article  CAS  Google Scholar 

  8. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  Google Scholar 

  9. Wang, C., Liu, D. & Lin, W. Metal–organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 135, 13222–13234 (2013).

    Article  CAS  Google Scholar 

  10. Dong, R., Zhang, T. & Feng, X. Interface-assisted synthesis of 2D materials: trend and challenges. Chem. Rev. 118, 6189–6235 (2018).

    Article  CAS  Google Scholar 

  11. Hasell, T. & Cooper, A. I. Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016).

    Article  CAS  Google Scholar 

  12. Jin, Y., Hu, Y. & Zhang, W. Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 1, 0056 (2017).

    Article  CAS  Google Scholar 

  13. Müllen, K. Molecular defects in organic materials. Nat. Rev. Mater. 1, 15013 (2016).

    Article  CAS  Google Scholar 

  14. Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    Article  CAS  Google Scholar 

  15. Cook, T. R. & Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015).

    Article  CAS  Google Scholar 

  16. Chakraborty, S. & Newkome, G. R. Terpyridine-based metallosupramolecular constructs: tailored monomers to precise 2D-motifs and 3D-metallocages. Chem. Soc. Rev. 47, 3991–4016 (2018).

    Article  CAS  Google Scholar 

  17. Leininger, S., Olenyuk, B. & Stang, P. J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 100, 853–908 (2000).

    Article  CAS  Google Scholar 

  18. Wu, G.-Y., Chen, L.-J., Xu, L., Zhao, X.-L. & Yang, H.-B. Construction of supramolecular hexagonal metallacycles via coordination-driven self-assembly: structure, properties and application. Coord. Chem. Rev. 369, 39–75 (2018).

    Article  CAS  Google Scholar 

  19. Fujita, M., Yazaki, J. & Ogura, K. Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4′-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media. J. Am. Chem. Soc. 112, 5645–5647 (1990).

    Article  CAS  Google Scholar 

  20. Stang, P. J. & Cao, D. H. Transition metal based cationic molecular boxes. self-assembly of macrocyclic platinum(II) and palladium(II) tetranuclear complexes. J. Am. Chem. Soc. 116, 4981–4982 (1994).

    Article  CAS  Google Scholar 

  21. Slone, R. V., Hupp, J. T., Stern, C. L. & Albrecht-Schmitt, T. E. Self-assembly of luminescent molecular squares featuring octahedral rhenium corners. Inorg. Chem. 35, 4096–4097 (1996).

    Article  CAS  Google Scholar 

  22. Benkstein, K. D., Hupp, J. T. & Stern, C. L. Molecular rectangles based on rhenium(I) coordination chemistry. J. Am. Chem. Soc. 120, 12982–12983 (1998).

    Article  CAS  Google Scholar 

  23. Youinou, M.-T., Rahmouni, N., Fischer, J. & Osborn, J. A. Self-assembly of a Cu4 complex with coplanar copper(i) ions: synthesis, structure, and electrochemical properties. Angew. Chem. Int. Ed. Engl. 31, 733–735 (1992).

    Article  Google Scholar 

  24. Fujita, M. et al. On the structure of transition-metal-linked molecular squares. Chem. Commun. 1996, 1535–1536 (1996).

    Article  Google Scholar 

  25. Schmittel, M. & Mahata, K. Clean formation and dynamic exchange reactions of a supramolecular equilateral triangle that is both heterometallic and heteroleptic. Chem. Commun. 2008, 2550–2552 (2008).

    Article  CAS  Google Scholar 

  26. Yamamoto, T., Arif, A. M. & Stang, P. J. Dynamic equilibrium of a supramolecular dimeric rhomboid and trimeric hexagon and determination of its thermodynamic constants. J. Am. Chem. Soc. 125, 12309–12317 (2003).

    Article  CAS  Google Scholar 

  27. Kuehl, C. J., Huang, S. D. & Stang, P. J. Self-assembly with postmodification: kinetically stabilized metalla-supramolecular rectangles. J. Am. Chem. Soc. 123, 9634–9641 (2001).

    Article  CAS  Google Scholar 

  28. Mukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. J. Design, synthesis, and crystallographic studies of neutral platinum-based macrocycles formed via self-assembly. J. Am. Chem. Soc. 126, 2464–2473 (2004).

    Article  CAS  Google Scholar 

  29. Chowdhury, A., Howlader, P. & Mukherjee, P. S. Aggregation-induced emission of platinum(ii) metallacycles and their ability to detect nitroaromatics. Chem. Eur. J. 22, 7468–7478 (2016).

    Article  CAS  Google Scholar 

  30. Stang, P. J., Persky, N. E. & Manna, J. Molecular architecture via coordination:  self-assembly of nanoscale platinum containing molecular hexagons. J. Am. Chem. Soc. 119, 4777–4778 (1997).

    Article  CAS  Google Scholar 

  31. Sun, Y. et al. Alanine-based chiral metallogels via supramolecular coordination complex platforms: metallogelation induced chirality transfer. J. Am. Chem. Soc. 140, 3257–3263 (2018).

    Article  CAS  Google Scholar 

  32. Tian, Y., Yan, X., Saha, M. L., Niu, Z. & Stang, P. J. Hierarchical self-assembly of responsive organoplatinum(ii) metallacycle–TMV complexes with turn-on fluorescence. J. Am. Chem. Soc. 138, 12033–12036 (2016).

    Article  CAS  Google Scholar 

  33. Yan, X. et al. Light-emitting superstructures with anion effect: coordination-driven self-assembly of pure tetraphenylethylene metallacycles and metallacages. J. Am. Chem. Soc. 138, 4580–4588 (2016).

    Article  CAS  Google Scholar 

  34. Ghosh, K. et al. Coordination-driven self-assembly of cavity-cored multiple crown ether derivatives and poly[2]pseudorotaxanes. J. Am. Chem. Soc. 130, 5320–5334 (2008).

    Article  CAS  Google Scholar 

  35. Shanmugaraju, S., Joshi, S. A. & Mukherjee, P. S. Self-assembly of metallamacrocycles using a dinuclear organometallic acceptor: synthesis, characterization, and sensing study. Inorg. Chem. 50, 11736–11745 (2011).

    Article  CAS  Google Scholar 

  36. Bar, A. K., Shanmugaraju, S., Chi, K.-W. & Mukherjee, P. S. Self-assembly of neutral and cationic Pdii organometallic molecular rectangles: synthesis, characterization and nitroaromatic sensing. Dalton Trans. 40, 2257–2267 (2011).

    Article  CAS  Google Scholar 

  37. Jiang, B. et al. Hierarchical self-assembly of triangular metallodendrimers into the ordered nanostructures. Chin. Chem. Lett. 27, 607–612 (2016).

    Article  CAS  Google Scholar 

  38. Zheng, W. et al. Construction of smart supramolecular polymeric hydrogels cross-linked by discrete organoplatinum(ii) metallacycles via post-assembly polymerization. J. Am. Chem. Soc. 138, 4927–4937 (2016).

    Article  CAS  Google Scholar 

  39. Li, M. et al. Conformer-dependent self-assembled metallacycles with photo-reversible response. Chem. Sci. 10, 4896–4904 (2019).

    Article  CAS  Google Scholar 

  40. Fujita, D. et al. Self-assembly of M30L60 icosidodecahedron. Chem 1, 91–101 (2016).

    Article  CAS  Google Scholar 

  41. Fujita, D. et al. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature 540, 563–566 (2016).

    Article  CAS  Google Scholar 

  42. Fujita, M. et al. Finite, spherical coordination networks that self-organize from 36 small components. Angew. Chem. Int. Ed. 43, 5621–5625 (2004).

    Article  CAS  Google Scholar 

  43. Sun, Q.-F. et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 328, 1144–1147 (2010).

    Article  CAS  Google Scholar 

  44. Hwang, S.-H. et al. Construction of triangular metallomacrocycles: [M3(1,2-bis(2,2′:6′,2″-terpyridin-4-yl-ethynyl)benzene)3] [M = Ru(ii), Fe(ii), 2Ru(ii)Fe(ii)]. Chem. Commun. 2005, 713–715 (2005).

    Article  Google Scholar 

  45. Sarkar, R. et al. Multicomponent reassembly of terpyridine-based materials: quantitative metallomacrocyclic rearrangement. Chem. Commun. 51, 12851–12854 (2015).

    Article  CAS  Google Scholar 

  46. Hwang, S.-H. et al. Design, self-assembly, and photophysical properties of pentameric metallomacrocycles: [M5(N-hexyl[1,2-bis(2,2′:6′,2″-terpyridin-4-yl)]carbazole)5][M = Fe(ii), Ru(ii), and Zn(ii)]. Chem. Commun. 2005, 4672–4674 (2005).

    Article  CAS  Google Scholar 

  47. Chan, Y.-T. et al. Self-assembly and traveling wave ion mobility mass spectrometry analysis of hexacadmium macrocycles. J. Am. Chem. Soc. 131, 16395–16397 (2009).

    Article  CAS  Google Scholar 

  48. Wang, S.-Y. et al. Multicomponent self-assembly of metallo-supramolecular macrocycles and cages through dynamic heteroleptic terpyridine complexation. Chem. Eur. J. 24, 9274–9284 (2018).

    Article  CAS  Google Scholar 

  49. Li, X. et al. Separation and characterization of metallosupramolecular libraries by ion mobility mass spectrometry. Anal. Chem. 83, 6667–6674 (2011).

    Article  CAS  Google Scholar 

  50. Fukino, T. et al. Manipulation of discrete nanostructures by selective modulation of noncovalent forces. Science 344, 499–504 (2014).

    Article  CAS  Google Scholar 

  51. Yamagishi, H. et al. Metal–organic nanotube with helical and propeller-chiral motifs composed of a C10-symmetric double-decker nanoring. J. Am. Chem. Soc. 137, 7628–7631 (2015).

    Article  CAS  Google Scholar 

  52. Zhang, T., Zhou, L.-P., Guo, X.-Q., Cai, L.-X. & Sun, Q.-F. Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles. Nat. Commun. 8, 15898 (2017).

    Article  CAS  Google Scholar 

  53. Bols, P. S. & Anderson, H. L. Template-directed synthesis of molecular nanorings and cages. Acc. Chem. Res. 51, 2083–2092 (2018).

    Article  CAS  Google Scholar 

  54. N. Taylor, P. et al. Conjugated porphyrin oligomers from monomer to hexamer. Chem. Commun. 1998, 909–910 (1998).

    Article  Google Scholar 

  55. Hoffmann, M., Wilson, C. J., Odell, B. & Anderson, H. L. Template-directed synthesis of a π-conjugated porphyrin nanoring. Angew. Chem. Int. Ed. 46, 3122–3125 (2007).

    Article  CAS  Google Scholar 

  56. Hoffmann, M. et al. Enhanced π conjugation around a porphyrin[6] nanoring. Angew. Chem. Int. Ed. 47, 4993–4996 (2008).

    Article  CAS  Google Scholar 

  57. Sprafke, J. K. et al. Belt-shaped π-systems: relating geometry to electronic structure in a six-porphyrin nanoring. J. Am. Chem. Soc. 133, 17262–17273 (2011).

    Article  CAS  Google Scholar 

  58. Liu, P., Neuhaus, P., Kondratuk, D. V., Balaban, T. S. & Anderson, H. L. Cyclodextrin-templated porphyrin nanorings. Angew. Chem. Int. Ed. 53, 7770–7773 (2014).

    Article  CAS  Google Scholar 

  59. Liu, P. et al. Synthesis of five-porphyrin nanorings by using ferrocene and corannulene templates. Angew. Chem. Int. Ed. 55, 8358–8362 (2016).

    Article  CAS  Google Scholar 

  60. O’Sullivan, M. C. et al. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469, 72–75 (2011).

    Article  CAS  Google Scholar 

  61. Kondratuk, D. V. et al. Supramolecular nesting of cyclic polymers. Nat. Chem. 7, 317–322 (2015).

    Article  CAS  Google Scholar 

  62. Rickhaus, M. et al. Global aromaticity at the nanoscale. Nat. Chem. 12, 236–241 (2020).

    Article  CAS  Google Scholar 

  63. Hasenknopf, B., Lehn, J.-M., Kneisel, B. O., Baum, G. & Fenske, D. Self-assembly of a circular double helicate. Angew. Chem. Int. Ed. Engl. 35, 1838–1840 (1996).

    Article  CAS  Google Scholar 

  64. Hasenknopf, B. et al. Self-assembly of tetra- and hexanuclear circular helicates. J. Am. Chem. Soc. 119, 10956–10962 (1997).

    Article  CAS  Google Scholar 

  65. Ayme, J.-F. et al. Strong and selective anion binding within the central cavity of molecular knots and links. J. Am. Chem. Soc. 137, 9812–9815 (2015).

    Article  CAS  Google Scholar 

  66. Leigh, D. A., Pritchard, R. G. & Stephens, A. J. A Star of David catenane. Nat. Chem. 6, 978–982 (2014).

    Article  CAS  Google Scholar 

  67. Marcos, V. et al. Allosteric initiation and regulation of catalysis with a molecular knot. Science 352, 1555–1559 (2016).

    Article  CAS  Google Scholar 

  68. Ayme, J.-F. et al. A synthetic molecular pentafoil knot. Nat. Chem. 4, 15–20 (2012).

    Article  CAS  Google Scholar 

  69. Zhang, L. et al. Stereoselective synthesis of a composite knot with nine crossings. Nat. Chem. 10, 1083–1088 (2018).

    Article  CAS  Google Scholar 

  70. Danon, J. J. et al. Braiding a molecular knot with eight crossings. Science 355, 159–162 (2017).

    Article  CAS  Google Scholar 

  71. Wang, M. et al. Hexagon wreaths: self-assembly of discrete supramolecular fractal architectures using multitopic terpyridine ligands. J. Am. Chem. Soc. 136, 6664–6671 (2014).

    Article  CAS  Google Scholar 

  72. Sun, B. et al. From ring-in-ring to sphere-in-sphere: self-assembly of discrete 2D and 3D architectures with increasing stability. J. Am. Chem. Soc. 137, 1556–1564 (2015).

    Article  CAS  Google Scholar 

  73. Yin, G.-Q. et al. Self-assembly of emissive supramolecular rosettes with increasing complexity using multitopic terpyridine ligands. Nat. Commun. 9, 567 (2018).

    Article  CAS  Google Scholar 

  74. Song, B. et al. Direct self-assembly of a 2D and 3D Star of David. Angew. Chem. Int. Ed. 56, 5258–5262 (2017).

    Article  CAS  Google Scholar 

  75. Wang, M. et al. Self-assembly of concentric hexagons and hierarchical self-assembly of supramolecular metal–organic nanoribbons at the solid/liquid interface. J. Am. Chem. Soc. 138, 9258–9268 (2016).

    Article  CAS  Google Scholar 

  76. Wang, H. et al. Supramolecular Kandinsky circles with high antibacterial activity. Nat. Commun. 9, 1815 (2018).

    Article  CAS  Google Scholar 

  77. Wang, H. et al. Combining synthesis and self-assembly in one pot to construct complex 2D metallo-supramolecules using terpyridine and pyrylium salts. J. Am. Chem. Soc. 141, 13187–13195 (2019).

    Article  CAS  Google Scholar 

  78. Fu, J.-H., Lee, Y.-H., He, Y.-J. & Chan, Y.-T. Facile self-assembly of metallo-supramolecular ring-in-ring and spiderweb structures using multivalent terpyridine ligands. Angew. Chem. Int. Ed. 54, 6231–6235 (2015).

    Article  CAS  Google Scholar 

  79. Tai, C.-Y. et al. Facile synthesis of multicomponent heterobimetallic metallomacrocycles through selective metal–ligand coordination. Chem. Commun. 55, 6289–6292 (2019).

    Article  CAS  Google Scholar 

  80. Wang, S.-Y. et al. Metallo-supramolecular self-assembly of a multicomponent ditrigon based on complementary terpyridine ligand pairing. J. Am. Chem. Soc. 138, 3651–3654 (2016).

    Article  CAS  Google Scholar 

  81. Fu, J.-H., Wang, S.-Y., Chen, Y.-S., Prusty, S. & Chan, Y.-T. One-pot self-assembly of stellated metallosupramolecules from multivalent and complementary terpyridine-based ligands. J. Am. Chem. Soc. 141, 16217–16221 (2019).

    Article  CAS  Google Scholar 

  82. Rousseaux, S. A. L. et al. Self-assembly of Russian doll concentric porphyrin nanorings. J. Am. Chem. Soc. 137, 12713–12718 (2015).

    Article  CAS  Google Scholar 

  83. Sarkar, R. et al. One-step multicomponent self-assembly of a first-generation Sierpiński triangle: from fractal design to chemical reality. Angew. Chem. Int. Ed. 53, 12182–12185 (2014).

    Article  CAS  Google Scholar 

  84. Schultz, A. et al. Stoichiometric self-assembly of isomeric, shape-persistent, supramacromolecular bowtie and butterfly structures. J. Am. Chem. Soc. 134, 7672–7675 (2012).

    Article  CAS  Google Scholar 

  85. Jiang, Z. et al. Self-assembly of a supramolecular hexagram and a supramolecular pentagram. Nat. Commun. 8, 15476 (2017).

    Article  CAS  Google Scholar 

  86. Chakraborty, S. et al. Programmed molecular engineering: stepwise, multicomponent assembly of a dimetallic metallotriangulane. Eur. J. Org. Chem. 2016, 5091–5095 (2016).

    Article  CAS  Google Scholar 

  87. Jiang, Z. et al. Constructing high-generation Sierpiński triangles by molecular puzzling. Angew. Chem. Int. Ed. 56, 11450–11455 (2017).

    Article  CAS  Google Scholar 

  88. Chen, M. et al. Truncated Sierpin´ski triangular assembly from a molecular mortise–tenon joint. J. Am. Chem. Soc. 140, 12168–12174 (2018).

    Article  CAS  Google Scholar 

  89. Li, Y. et al. Giant, hollow 2D metalloarchitecture: stepwise self-assembly of a hexagonal supramolecular nut. J. Am. Chem. Soc. 138, 10041–10046 (2016).

    Article  CAS  Google Scholar 

  90. Wang, J.-L. et al. Stoichiometric self-assembly of shape-persistent 2D complexes: a facile route to a symmetric supramacromolecular spoked wheel. J. Am. Chem. Soc. 133, 11450–11453 (2011).

    Article  CAS  Google Scholar 

  91. Lu, X. et al. Self-assembly of a supramolecular, three-dimensional, spoked, bicycle-like wheel. Angew. Chem. Int. Ed. 52, 7728–7731 (2013).

    Article  CAS  Google Scholar 

  92. Lu, X. et al. One ligand in dual roles: self-assembly of a bis-rhomboidal-shaped, three-dimensional molecular wheel. Chem. Eur. J. 20, 13094–13098 (2014).

    Article  CAS  Google Scholar 

  93. Lu, X. et al. Probing a hidden world of molecular self-assembly: concentration-dependent, three-dimensional supramolecular interconversions. J. Am. Chem. Soc. 136, 18149–18155 (2014).

    Article  CAS  Google Scholar 

  94. Zhang, Z. et al. Supersnowflakes: stepwise self-assembly and dynamic exchange of rhombus star-shaped supramolecules. J. Am. Chem. Soc. 139, 8174–8185 (2017).

    Article  CAS  Google Scholar 

  95. Zhang, Z. et al. Stepwise self-assembly and dynamic exchange of supramolecular snowflakes. Isr. J. Chem. 59, 237–247 (2019).

    Article  CAS  Google Scholar 

  96. Newkome, G. R. et al. Nanoassembly of a fractal polymer: a molecular “Sierpinski Hexagonal Gasket”. Science 312, 1782–1785 (2006).

    Article  CAS  Google Scholar 

  97. Wu, T. et al. Stepwise self-assembly of a discrete molecular honeycomb using a multitopic metallo-organic ligand. Chem. Commun. 53, 6732–6735 (2017).

    Article  CAS  Google Scholar 

  98. Song, B. et al. Self-assembly of polycyclic supramolecules using linear metal-organic ligands. Nat. Commun. 9, 4575 (2018).

    Article  CAS  Google Scholar 

  99. Wang, L. et al. Self-assembly of supramolecular fractals from generation 1 to 5. J. Am. Chem. Soc. 140, 14087–14096 (2018).

    Article  CAS  Google Scholar 

  100. Zhang, Z. et al. Intra- and intermolecular self-assembly of a 20-nm-wide supramolecular hexagonal grid. Nat. Chem. 12, 468–474 (2020).

    Article  CAS  Google Scholar 

  101. Sharma, C. V. K. et al. Design strategies for solid-state supramolecular arrays containing both mixed-metalated and freebase porphyrins. J. Am. Chem. Soc. 121, 1137–1144 (1999).

    Article  CAS  Google Scholar 

  102. Wu, J.-X. et al. Cathodized copper porphyrin metal–organic framework nanosheets for selective formate and acetate production from CO2 electroreduction. Chem. Sci. 10, 2199–2205 (2019).

    Article  CAS  Google Scholar 

  103. Drain, C. M., Nifiatis, F., Vasenko, A. & Batteas, J. D. Porphyrin tessellation by design: metal-mediated self-assembly of large arrays and tapes. Angew. Chem. Int. Ed. 37, 2344–2347 (1998).

    Article  CAS  Google Scholar 

  104. Baxter, P. N. W., Lehn, J.-M., Fischer, J. & Youinou, M.-T. Self-assembly and structure of a 3 × 3 inorganic grid from nine silver ions and six ligand components. Angew. Chem. Int. Ed. Engl. 33, 2284–2287 (1994).

    Article  Google Scholar 

  105. Baxter, P. N. W., Lehn, J.-M., Baum, G. & Fenske, D. Self-assembly and structure of interconverting multinuclear inorganic arrays: A [4×5]-AgI20 grid and an AgI10 quadruple helicate. Chem. Eur. J. 6, 4510–4517 (2000).

    Article  CAS  Google Scholar 

  106. Onions, S. T., Frankin, A. M., Horton, P. N., Hursthouse, M. B. & Matthews, C. J. Self-assembly of a unique hexadecanuclear [4 × (2 × 2)]-Pb16 ‘grid of grids’ type structure. Chem. Commun. 2003, 2864–2865 (2003).

    Article  Google Scholar 

  107. Dey, S. K. et al. Supramolecular self-assembled polynuclear complexes from tritopic, tetratopic, and pentatopic ligands:  structural, magnetic and surface studies. Inorg. Chem. 46, 7767–7781 (2007).

    Article  CAS  Google Scholar 

  108. Logacheva, N. M. et al. Ni(ii), Co(ii), Cu(ii), Zn(ii) and Na(i) complexes of a hybrid ligand 4′-(4″′-benzo-15-crown-5)-methyloxy-2,2′:6′,2″-terpyridine. Dalton Trans. 2009, 2482–2489 (2009).

    Article  CAS  Google Scholar 

  109. Hofmeier, H., Andres, P. R., Hoogenboom, R., Herdtweck, E. & Schubert, U. S. Terpyridine–ruthenium complexes as building blocks for new metallo-supramolecular architectures. Aust. J. Chem. 57, 419–426 (2004).

    Article  CAS  Google Scholar 

  110. Giuseppone, N., Schmitt, J.-L., Allouche, L. & Lehn, J.-M. DOSY NMR experiments as a tool for the analysis of constitutional and motional dynamic processes: implementation for the driven evolution of dynamic combinatorial libraries of helical strands. Angew. Chem. Int. Ed. 47, 2235–2239 (2008).

    Article  CAS  Google Scholar 

  111. Schulze, B. M., Watkins, D. L., Zhang, J., Ghiviriga, I. & Castellano, R. K. Estimating the shape and size of supramolecular assemblies by variable temperature diffusion ordered spectroscopy. Org. Biomol. Chem. 12, 7932–7936 (2014).

    Article  CAS  Google Scholar 

  112. Yamaguchi, K. Cold-spray ionization mass spectrometry: principle and applications. Int. J. Mass. Spectrom. 38, 473–490 (2003).

    Article  CAS  Google Scholar 

  113. Baytekin, B., Baytekin, H. T. & Schalley, C. A. Mass spectrometric studies of non-covalent compounds: why supramolecular chemistry in the gas phase? Org. Biomol. Chem. 4, 2825–2841 (2006).

    Article  CAS  Google Scholar 

  114. Kalenius, E., Groessl, M. & Rissanen, K. Ion mobility–mass spectrometry of supramolecular complexes and assemblies. Nat. Rev. Chem. 3, 4–14 (2019).

    Article  CAS  Google Scholar 

  115. Wang, L. et al. Introducing seven transition metal ions into terpyridine-based supramolecules: self-assembly and dynamic ligand exchange study. J. Am. Chem. Soc. 142, 1811–1821 (2020).

    Article  CAS  Google Scholar 

  116. Meier, M. A. R., Lohmeijer, B. G. G. & Schubert, U. S. Relative binding strength of terpyridine model complexes under matrix-assisted laser desorption/ionization mass spectrometry conditions. Int. J. Mass. Spectrom. 38, 510–516 (2003).

    Article  CAS  Google Scholar 

  117. Li, X., Chan, Y.-T., Newkome, G. R. & Wesdemiotis, C. Gradient tandem mass spectrometry interfaced with ion mobility separation for the characterization of supramolecular architectures. Anal. Chem. 83, 1284–1290 (2011).

    Article  CAS  Google Scholar 

  118. Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).

    Article  CAS  Google Scholar 

  119. Radmacher, M., Fritz, M., Hansma, H. & Hansma, P. Direct observation of enzyme activity with the atomic force microscope. Science 265, 1577–1579 (1994).

    Article  CAS  Google Scholar 

  120. Chen, G., Zhou, J., Park, B. & Xu, B. Single ricin detection by atomic force microscopy chemomechanical mapping. Appl. Phys. Lett. 95, 043103 (2009).

    Article  CAS  Google Scholar 

  121. Stepanenko, V. & Würthner, F. Hierarchical self-assembly of cyclic dye arrays into two-dimensional honeycomb nanonetworks. Small 4, 2158–2161 (2008).

    Article  CAS  Google Scholar 

  122. Gong, J.-R. et al. Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111) surfaces. Proc. Natl Acad. Sci. USA 102, 971–974 (2005).

    Article  CAS  Google Scholar 

  123. Yuan, Q.-H., Wan, L.-J., Jude, H. & Stang, P. J. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au(111) Surfaces. J. Am. Chem. Soc. 127, 16279–16286 (2005).

    Article  CAS  Google Scholar 

  124. Wang, L. et al. Self-assembly of metallo-supramolecules under kinetic or thermodynamic control: characterization of positional isomers using scanning tunneling spectroscopy. J. Am. Chem. Soc. 142, 9809–9817 (2020).

    CAS  Google Scholar 

  125. Olenyuk, B., Whiteford, J. A., Fechtenkotter, A. & Stang, P. J. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 398, 796–799 (1999).

    Article  CAS  Google Scholar 

  126. Xie, T.-Z. et al. Supercharged, precise, megametallodendrimers via a single-step, quantitative, assembly process. J. Am. Chem. Soc. 139, 15652–15655 (2017).

    Article  CAS  Google Scholar 

  127. Yamashina, M. et al. An antiaromatic-walled nanospace. Nature 574, 511–515 (2019).

    Article  CAS  Google Scholar 

  128. Zhang, H. et al. Self-assembled pyridine-dipyrrolate cages. J. Am. Chem. Soc. 138, 4573–4579 (2016).

    Article  CAS  Google Scholar 

  129. Hiraoka, S. et al. Isostructural coordination capsules for a series of 10 different d5–d10 transition-metal ions. Angew. Chem. Int. Ed. 45, 6488–6491 (2006).

    Article  CAS  Google Scholar 

  130. Han, M. et al. Light-controlled interconversion between a self-assembled triangle and a rhombicuboctahedral sphere. Angew. Chem. Int. Ed. 55, 445–449 (2016).

    Article  CAS  Google Scholar 

  131. Saha, R. et al. Unusual behavior of donor–acceptor Stenhouse adducts in confined space of a water-soluble Pdii8 molecular vessel. J. Am. Chem. Soc. 141, 8638–8645 (2019).

    Article  CAS  Google Scholar 

  132. Chen, Y.-S. et al. Chemical mimicry of viral capsid self-assembly via corannulene-based pentatopic tectons. Nat. Commun. 10, 3443 (2019).

    Article  CAS  Google Scholar 

  133. Wang, H. et al. Assembling pentatopic terpyridine ligands with three types of coordination moieties into a giant supramolecular hexagonal prism: Synthesis, self-assembly, characterization, and antimicrobial study. J. Am. Chem. Soc. 141, 16108–16116 (2019).

    Article  CAS  Google Scholar 

  134. Chen, M. et al. Highly stable spherical metallo-capsule from a branched hexapodal terpyridine and its self-assembled berry-type nanostructure. J. Am. Chem. Soc. 140, 2555–2561 (2018).

    Article  CAS  Google Scholar 

  135. Li, X.-Z. et al. Evolution of luminescent supramolecular lanthanide M2nL3n complexes from helicates and tetrahedra to cubes. J. Am. Chem. Soc. 139, 8237–8244 (2017).

    Article  CAS  Google Scholar 

  136. Veneziano, R. et al. Designer nanoscale DNA assemblies programmed from the top down. Science 352, 1534–1534 (2016).

    Article  CAS  Google Scholar 

  137. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  138. He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    Article  CAS  Google Scholar 

  139. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  Google Scholar 

  140. Han, D. et al. DNA gridiron nanostructures based on four-arm junctions. Science 339, 1412–1415 (2013).

    Article  CAS  Google Scholar 

  141. Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779–784 (2015).

    Article  CAS  Google Scholar 

  142. Richert, S. et al. Constructive quantum interference in a bis-copper six-porphyrin nanoring. Nat. Commun. 8, 14842 (2017).

    Article  CAS  Google Scholar 

  143. Rosenberg, B., Vancamp, L., Trosko, J. E. & Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. Nature 222, 385–386 (1969).

    Article  CAS  Google Scholar 

  144. Clarke, M. J., Zhu, F. & Frasca, D. R. Non-platinum chemotherapeutic metallopharmaceuticals. Chem. Rev. 99, 2511–2534 (1999).

    Article  CAS  Google Scholar 

  145. Shaw, C. F. Gold-based therapeutic agents. Chem. Rev. 99, 2589–2600 (1999).

    Article  CAS  Google Scholar 

  146. Zhu, J.-L. et al. Switchable organoplatinum metallacycles with high quantum yields and tunable fluorescence wavelengths. Nat. Commun. 10, 4285 (2019).

    Article  CAS  Google Scholar 

  147. Chang, X. et al. Coordination-driven self-assembled metallacycles incorporating pyrene: fluorescence mutability, tunability, and aromatic amine sensing. J. Am. Chem. Soc. 141, 1757–1765 (2019).

    Article  CAS  Google Scholar 

  148. Chow, P.-K. et al. Highly luminescent palladium(ii) complexes with sub-millisecond blue to green phosphorescent excited states. Photocatalysis and highly efficient PSF-OLEDs. Chem. Sci. 7, 6083–6098 (2016).

    Article  CAS  Google Scholar 

  149. Lin, C. T., Boettcher, W., Chou, M., Creutz, C. & Sutin, N. Mechanism of the quenching of the emission of substituted polypyridineruthenium(ii) complexes by iron(iii), chromium(iii), and europium(iii) ions. J. Am. Chem. Soc. 98, 6536–6544 (1976).

    Article  CAS  Google Scholar 

  150. Wang, Z. et al. Hierarchical self-assembly and chiroptical studies of luminescent 4d–4f cages. Inorg. Chem. 57, 7982–7992 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Shenzhen University, the University of South Florida and Texas State University. X.L. acknowledges the Tencent Founders Alumni (TFA) Foundation for support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and the editing of the manuscript prior to submission. H.W., N.L. and X.L. researched the data. H.W., N.L. and X.L. wrote the manuscript, with help from Y.L. and A.F.

Corresponding author

Correspondence to Xiaopeng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, Y., Li, N. et al. Increasing the size and complexity of discrete 2D metallosupramolecules. Nat Rev Mater 6, 145–167 (2021). https://doi.org/10.1038/s41578-020-00257-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00257-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing